import torch
import torch.nn as nn
from .helper import _check_torch_tensor, _check_square_matrix
[docs]
class LULayer(nn.Module):
"""LU Decomposition Layer
A square matrix X (n times n) is decomposed to
the product of L (n times n) and U (n times n).
Attributes:
x (torch.Tensor): A square matrix X (n times n)
Example:
>>> import torchdecomp as td
>>> import torch
>>> torch.manual_seed(123456)
>>> x = torch.randn(6, 6) # Test datasets
>>> lu_layer = td.LULayer(x) # Instantiation
"""
def __init__(self, x):
"""Initialization function
"""
super(LULayer, self).__init__()
_check_torch_tensor(x)
_check_square_matrix(x)
size = x.size()
L = torch.tril(torch.randn(size), diagonal=-1)
U = torch.triu(torch.randn(size), diagonal=1)
# Set diagonal elements as 1s
for i in range(size[0]):
L[i, i] = 1.0
self.L = nn.Parameter(L)
self.U = nn.Parameter(U)
[docs]
def forward(self):
"""Forward propagation function
"""
return torch.mm(self.L, self.U)